Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247835

RESUMO

Human-induced pluripotent stem cells (hiPSCs) have shown great potential for human health, but their growth and properties have been significantly limited by the traditional monolayer (2D) cell culture method for more than 15 years. Three-dimensional (3D) culture technology has demonstrated tremendous advantages over 2D. In particular, the 3D PGmatrix hiPSC derived from a peptide hydrogel offers a breakthrough pathway for the maintenance and expansion of physiologically relevant hiPSC 3D colonies (spheroids). In this study, the impact of 3D culture conditions in PGmatrix hiPSC on cell performance, integrity, and secretome profiles was determined across two commonly used hiPSC cell lines derived from fibroblast cells (hiPSC-F) and peripheral blood mononuclear cells (hiPSC-P) in the two most popular hiPSC culture media (mTeSR1 and essential eight (E8)). The 3D culture conditions varied in hydrogel strength, 3D embedded matrix, and 3D suspension matrix. The results showed that hiPSCs cultured in 3D PGmatrix hiPSC demonstrated the ability to maintain a consistently high cell viability that was above 95% across all the 3D conditions with cell expansion rates of 10-20-fold, depending on the 3D conditions and cell lines. The RT-qPCR analysis suggested that pluripotent gene markers are stable and not significantly affected by the cell lines or 3D PGmatrix conditions tested in this study. Mass spectrometry-based analysis of secretome from hiPSCs cultured in 3D PGmatrix hiPSC revealed a significantly higher quantity of unique proteins, including extracellular vesicle (EV)-related proteins and growth factors, compared to those in the 2D culture. Moreover, this is the first evidence to identify that hiPSCs in a medium with a rich supplement (i.e., mTeSR1) released more growth-regulating factors, while in a medium with fewer supplements (i.e., E8) hiPSCs secreted more survival growth factors and extracellular proteins. These findings offer insights into how these differences may impact hiPSC behavior, and they deepen our understanding of how hiPSCs respond to 3D culture conditions, aiding the optimization of hiPSC properties in translational biomedical research toward clinical applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Hidrogéis/farmacologia , Leucócitos Mononucleares , Secretoma , Peptídeos/farmacologia
2.
Foods ; 12(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509805

RESUMO

Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 µm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.

3.
Eur J Med Chem ; 244: 114830, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228414

RESUMO

Protein N-terminal methylation catalyzed by N-terminal methyltransferase 1 (NTMT1) is an emerging methylation present in eukaryotes, playing important regulatory roles in various biological and cellular processes. Although dysregulation of NTMT1 has been linked to many diseases such as colorectal cancer, their molecular and cellular mechanisms remain elusive due to inaccessibility to an effective cellular probe. Here we report the design, synthesis, and characterization of the first-in-class NTMT1 degraders based on proteolysis-targeting chimera (PROTAC) strategy. Through a brief structure-activity relationship (SAR) study of linker length, a cell permeable degrader 1 involving a von Hippel-Lindau (VHL) E3 ligase ligand was developed and demonstrated to reduce NTMT1 protein levels effectively and selectively in time- and dose-dependent manners in colorectal carcinoma cell lines HCT116 and HT29. Degrader 1 displayed DC50 = 7.53 µM and Dmax > 90% in HCT116 (cellular IC50 > 100 µM for its parent inhibitor DC541). While degrader 1 had marginal cytotoxicity, it displayed anti-proliferative activity in 2D and 3D culture environment, resulting from cell cycle arrested at G0/G1 phase in HCT116. Label-free global proteomic analysis revealed that degrader 1 induced overexpression of calreticulin (CALR), an immunogenic cell death (ICD) signal protein that is known to elicit antitumor immune response and clinically linked to a high survival rate of patients with colorectal cancer upon its upregulation. Collectively, degrader 1 offers the first selective cellular probe for NTMT1 exploration and a new drug discovery modality for NTMT1-related oncology and diseases.


Assuntos
Neoplasias Colorretais , Proteômica , Humanos , Proteólise , Ligantes , Metiltransferases , Desenho de Fármacos , Linhagem Celular Tumoral
4.
Biomolecules ; 12(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139156

RESUMO

Human-adipose-derived mesenchymal stem cells (hADMSCs) are adult stem cells and are relatively easy to access compared to other sources of mesenchymal stem cells (MSCs). They have shown immunomodulation properties as well as effects in improving tissue regeneration. To better stimulate and preserve the therapeutic properties of hADMSCs, biomaterials for cell delivery have been studied extensively. To date, hyaluronic acid (HA)-based materials have been most widely adopted by researchers around the world. PGmatrix is a new peptide-based hydrogel that has shown superior functional properties in 3D cell cultures. Here, we reported the in vitro and in vivo functional effects of PGmatrix on hADMSCs in comparison with HA and HA-based Hystem hydrogels. Our results showed that PGmatrix was far superior in maintaining hADMSC viability during prolonged incubation and stimulated expression of SSEA4 (stage-specific embryonic antigen-4) in hADMSCs. hADMSCs encapsulated in PGmatrix secreted more immune-responsive proteins than those in HA or Hystem, though similar VEGF-A and TGFß1 release levels were observed in all three hydrogels. In vivo studies revealed that hADMSCs encapsulated with PGmatrix showed improved skin wound healing in diabetic-induced mice at an early stage, suggesting possible anti-inflammatory effects, though similar re-epithelialization and collagen density were observed among PGmatrix and HA or Hystem hydrogels by day 21.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/farmacologia , Colágeno/metabolismo , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
6.
NPJ Sci Food ; 5(1): 14, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075054

RESUMO

In vitro cell culture models on monolayer surfaces (2D) have been widely adapted for identification of chemopreventive food compounds and food safety evaluation. However, the low correlation between 2D models and in vivo animal models has always been a concern; this gap is mainly caused by the lack of a three-dimensional (3D) extracellular microenvironment. In 2D models, cell behaviors and functionalities are altered, resulting in varied responses to external conditions (i.e., antioxidants) and hence leading to low predictability. Peptide hydrogel 3D scaffolding technologies, such as PGmatrix for cell culture, have been recently reported to grow organoid-like spheroids physiologically mimicking the 3D microenvironment that can be used as an in vitro 3D model for investigating cell activities, which is anticipated to improve the prediction rate. Thus, this review focuses on advances in 3D peptide hydrogels aiming to introduce 3D cell culture tools as in vitro 3D models for cancer-related research regarding food safety and nutraceuticals.

7.
Adv Wound Care (New Rochelle) ; 10(4): 191-203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32716728

RESUMO

Objective: One of the leading causes of death following traumatic injury is exsanguination. Biological material-based hemostatic agents such as fibrin, thrombin, and albumin have a high risk for causing infection. Synthetic peptide-based hemostatic agents offer an attractive alternative. The objective of this study is to explore the potential of h9e peptide as an effective hemostatic agent in both in vitro and in vivo models. Approach:In vitro blood coagulation kinetics in the presence of h9e peptide was determined as a function of gelation time using a dynamic rheometer. In vivo hemostatic effects were studied using the Wistar rat model. Results were compared to those of the commercial hemostatic product Celox™, a chitosan-based product. Adhesion of h9e peptide was evaluated using the platelet adhesion test. Biocompatibility of h9e peptide was studied in vivo using a mouse model. Results: After h9e peptide solution was mixed with blood, gelation started immediately, increased rapidly with time, and reached more than 100 Pa within 3 s. Blood coagulation strength increased as h9e peptide wt% concentration increased. In the rat model, h9e peptide solution at 5% weight concentration significantly reduced both bleeding time and blood loss, outperforming Celox. Preliminary pathological studies indicate that h9e peptide solution is biocompatible and did not have negative effects when injected subcutaneously in a mouse model. Innovation: For the first time, h9e peptide was found to have highly efficient hemostatic effects by forming nanoweb-like structures, which act as a preliminary thrombus and a surface to arrest bleeding 82% faster compared to the commercial hemostatic agent Celox. Conclusion: This study demonstrates that h9e peptide is a promising hemostatic biomaterial, not only because of its greater hemostatic effect than commercial product Celox but also because of its excellent biocompatibility based on the in vivo mouse model study.


Assuntos
Materiais Biocompatíveis/farmacologia , Hemorragia/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Tempo de Sangramento , Coagulação Sanguínea/efeitos dos fármacos , Quitosana/farmacologia , Feminino , Fibrina/farmacologia , Masculino , Camundongos , Oligopeptídeos/síntese química , Oligopeptídeos/química , Ratos , Ratos Wistar , Trombina/farmacologia
8.
Int J Biol Macromol ; 149: 609-616, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006578

RESUMO

Amyloid-like fibrils from food proteins possess unique functional properties for food and many other uses. This study reports the effect of hydrolytic heating (pH 2.0, 85 °C, 0-24 h) and incubation times (0-7 days) on the formation and physicochemical properties of amyloid fibrils based on soy protein isolates (SPI). The SPI hydrolysates and fibrils were characterized through AFM, Thioflavin T (ThT) fluorescence, SDS-PAGE, FTIR, solubility, particle size, and DSC. Stable amyloid-like protein fibrils were formed with 8-10 h of hydrolytic heating at 85 °C followed by 3 days of incubation at room temperature, as observed under AFM and confirmed with ThT assay. The fibrils contained significantly higher amounts of regular secondary structures than SPI. Incubation of the hydrolysates led to a slight increase of average particle sizes. Protein solubility near the isoelectric point (approximately pH 4.8) increased with longer hydrolytic heating (0-24 h). The hydrolysates and fibrils exhibited better gelling properties than the SPI. The DSC results revealed that hydrolysates from longer hydrolytic heating times (12 and 24 h) possessed stronger aggregation potential during heat treatment. This study provides useful information to manipulate the formation of protein fibrils and will benefit future research to explore their potential applications.


Assuntos
Amiloide/química , Proteínas de Soja/química , Benzotiazóis , Géis , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Tamanho da Partícula , Hidrolisados de Proteína , Estrutura Secundária de Proteína , Reologia , Solubilidade
9.
Toxicol In Vitro ; 61: 104599, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31306737

RESUMO

Traditional 2D monolayer cell culture model may overestimate chemopreventive agent's response due to lacking physiological relevance in three-dimensional microenvironment. This study was aimed to apply a novel 3D h9e peptide hydrogel cell culture system to evaluate the anticancer efficacy of chemopreventive phenolic acid on hepatocarcinoma HepG2 and colon adenocarcinoma SW480 cells. Both cell lines grew better in this 3D system with better cell growth and longer exponential phase than that in 2D model. Chlorogenic acid (CGA), known as a chemopreventive phenolic acid, at 0-40 µM for 72 h inhibited cell growth but not viability in both HepG2 and SW480 cells. The inhibition was much less potent in 3D system with an IC50 value of 58.0 ±â€¯15.8 or 285.6 ±â€¯75.4 µM when compared with 2D model with IC50 of 5.3 ±â€¯0.3 or 12.0 ±â€¯2.5 µM for HepG2 or SW480, respectively. Furthermore, the recovery of cells grown in 3D system after post-CGA appeared faster than 2D model. Taken together, an advanced 3D model has been established with favoring cell growth and less susceptible to inhibitory treatments in contrast to 2D model, thus predict closely to in vivo situation and may bridge the gap of in vitro to in vivo for prescreening chemopreventive agents for cancer prevention.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Ácido Clorogênico/farmacologia , Hidrogéis , Peptídeos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Fenóis
10.
Carbohydr Polym ; 152: 747-754, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516326

RESUMO

Film-forming properties of camelina gum (CG) were evaluated, including film appearance and morphological, mechanical, water/light barrier, and thermal properties. With 4% nanoclay, tensile strength of film increased from 43.2MPa to 54.6MPa without change elongation property. The formation of physically cross-linked networks in the film increased interfacial affinity between the CG matrix and intercalated nanoclay, as proved by FTIR and X-ray diffraction (XRD) data, which contributed to the mechanical strength of film. The increased nanoclay level (6%-10%) resulted in limited mechanical strength improvement due to poor dispersion and the appearance of agglomerates of nanoclay in the film matrix, as shown in morphological study. The compact structure of CG/nanoclay film could reduce the free volume of film matrix and obstruct the diffusion of water, thereby decreasing the water vapor permeability. The ultraviolet (UV) light transmittance of CG film decreased by 40% with 10% nanoclay.


Assuntos
Silicatos de Alumínio/química , Camellia/química , Glicerol/química , Membranas Artificiais , Gomas Vegetais/química , Resistência à Tração , Argila
11.
J Agric Food Chem ; 59(18): 9958-64, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21842907

RESUMO

Soy protein elastomer (SPE) exhibits elastic, extensible, and sticky properties in its native state and displays great potential as an alternative to wheat gluten. The objective of this study was to better understand the roles of soy protein subunits (polypeptides) contributing to the functional properties of SPE. Six soy protein samples with different subunit compositions were prepared by extracting the proteins at various pH values on the basis of the different solubilities of conglycinin (7S) and glycinin (11S) globulins. Soy protein containing a large amount of high molecular weight aggregates formed from α' and α subunits exhibited stronger viscoelastic solid behavior than other soy protein samples in terms of dynamic elastic and viscous modules. Electrophoresis results revealed that these aggregates are mainly stabilized through disulfide bonds, which also contributed to higher denaturation enthalpy as characterized by DSC and larger size protein aggregates observed by TEM. Besides, the most viscoelastic soy protein sample exhibited flat and smooth surfaces of the protein particles as observed by SEM, whereas other samples had rough and porous particle surfaces. It was proposed that the ability of α' and α to form aggregates and the resultant proper protein-protein interaction in soy proteins are the critical contributions to the continuous network of SPE.


Assuntos
Subunidades Proteicas/química , Proteínas de Soja/química , Fenômenos Químicos , Dissulfetos/química , Estabilidade de Medicamentos , Elasticidade , Peso Molecular , Subunidades Proteicas/isolamento & purificação , Solubilidade , Proteínas de Soja/ultraestrutura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...